Search results for "GTPase-Activating Protein"

showing 10 items of 17 documents

Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.

2009

International audience; A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, w…

0106 biological sciencesProteomicsGTPase-activating proteinQuantitative proteomicsDetergentsPlasma protein bindingBiologymedicine.disease_causeProteomics01 natural sciencesBiochemistryMass SpectrometryAnalytical ChemistryCell membraneFungal Proteins03 medical and health sciencesProtein targetingTobaccomedicine[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biology030304 developmental biologyPlant Proteins0303 health sciencesFungal proteinStaining and LabelingResearchAlgal ProteinsCell MembraneCell biologymedicine.anatomical_structureBiochemistryLuminescent MeasurementsSignal transductionPeptidesReactive Oxygen Species010606 plant biology & botanyProtein BindingSignal TransductionMolecularcellular proteomics : MCP
researchProduct

The integration of autophagy and cellular trafficking pathways via RAB GAPs.

2015

Macroautophagy is a conserved degradative pathway in which a double-membrane compartment sequesters cytoplasmic cargo and delivers the contents to lysosomes for degradation. Efficient formation and maturation of autophagic vesicles, so-called phagophores that are precursors to autophagosomes, and their subsequent trafficking to lysosomes relies on the activity of small RAB GTPases, which are essential factors of cellular vesicle transport systems. The activity of RAB GTPases is coordinated by upstream factors, which include guanine nucleotide exchange factors (RAB GEFs) and RAB GTPase activating proteins (RAB GAPs). A role in macroautophagy regulation for different TRE2-BUB2-CDC16 (TBC) dom…

0301 basic medicineautophagyRAB GTPaseGTPase-activating proteinGTPaseBiologyRAB GAP03 medical and health sciences0302 clinical medicineAnimalsGuanine Nucleotide Exchange FactorsHumansRAB3GAPMolecular Biologyautophagosome formationVesicleAutophagyCellular VesiclefungiGTPase-Activating ProteinsView and CommentaryCell BiologyTransport proteinCell biologyProtein Transport030104 developmental biologyrab GTP-Binding Proteinsvesicle traffickingGuanine nucleotide exchange factorRabLysosomes030217 neurology & neurosurgeryAutophagy
researchProduct

Oligophrenin 1 mutations frequently cause X-linked mental retardation with cerebellar hypoplasia

2005

Background: Mutations of oligophrenin 1, one of the first genes identified in nonspecific X-linked mental retardation (MRX), have been described in patients with moderate to severe cognitive impairment and predominant cerebellar hypoplasia, in the vermis. Objective: To further delineate the phenotypic and mutational spectrum of the syndrome, by screening oligophrenin 1 in two cohorts of male patients with mental retardation (MR) with or without known posterior fossa anomalies. Methods: Clinical examination, cognitive testing, MRI studies, and mutational analysis (denaturing gradient gel electrophoresis and direct sequencing) on blood lymphocytes were performed in 213 unrelated affected indi…

AdultMaleCerebellumAdolescentGenotypeDNA Mutational AnalysisNonsense mutationNervous System Malformationsmedicine.disease_causeCohort StudiesExonCerebellar DiseasesCerebellummedicineHumansGenetic TestingChildCerebellar hypoplasiaGeneticsMutationSplice site mutationGTPase-Activating ProteinsNuclear Proteinsmedicine.diseaseMagnetic Resonance ImagingHypoplasiaPedigreeDevelopmental disorderAlternative SplicingCytoskeletal ProteinsPhenotypemedicine.anatomical_structureFacial AsymmetryCodon NonsenseChild PreschoolMutationMental Retardation X-LinkedRNA Splice SitesNeurology (clinical)PsychologyGene DeletionNeurology
researchProduct

A genome-wide association study of monozygotic twin-pairs suggests a locus related to variability of serum high-density lipoprotein cholesterol

2012

Serum lipid levels have been associated with cardiovascular diseases, metabolic syndrome and type II diabetes (Kannel et al., 1961; Miller & Miller, 1975; Pilia et al., 2006). Variation in lipids levels is highly influenced by heritable factors (Friedlander et al., 1997) and 95 loci have already been associated with levels of high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, triglycerides (TG) and total cholesterol (TC) in numerous study samples and replicated in various populations using genome-wide approaches (Aulchenko et al., 2008; Kathiresan et al., 2008; Kooner et al., 2008; Teslovich et al., 2010; Willer et al., 2008). However, the genetic associa…

AdultNetherlands Twin Register (NTR)Candidate genegenetiikkaPopulationkolesteroliMonozygotic twinLocus (genetics)Genome-wide association studyBiologyPolymorphism Single NucleotideArticle03 medical and health sciences0302 clinical medicineGenetic variation/dk/atira/pure/keywords/cohort_studies/netherlands_twin_register_ntr_HumansAlleleGene–environment interactioneducationAllelesGenetics (clinical)Aged030304 developmental biologyAged 80 and overGenetics0303 health scienceseducation.field_of_studyperinnöllisyystiedeCholesterol HDLGTPase-Activating ProteinsObstetrics and Gynecologyta3141Twins MonozygoticMiddle AgedIntrons3. Good healthGenetic LociPediatrics Perinatology and Child HealthFemaleGene-Environment InteractionApolipoprotein A-II030217 neurology & neurosurgeryGenome-Wide Association Study
researchProduct

The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic

2022

ELMODs are a family of three mammalian paralogs that display GTPase activating protein (GAP) activity towards a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogs ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators a…

Cell divisionGTPase-activating proteinGolgi ApparatusGTPaseBiologyMicrotubulesMitochondrial Dynamicssymbols.namesakeMiceMicrotubuleCiliogenesisAnimalsCiliaMolecular BiologyADP-Ribosylation FactorsCiliumGTPase-Activating ProteinsCorrectionCell BiologyGolgi apparatusFibroblastsCell biologyCytoskeletal Proteinsmitochondrial fusionsymbolsSignal Transduction
researchProduct

Roles for ELMOD2 and Rootletin in ciliogenesis.

2021

AbstractELMOD2 is a GTPase activating protein (GAP) with uniquely broad specificity for ARF family GTPases. We previously showed that it acts with ARL2 in mitochondrial fusion and microtubule stability and with ARF6 during cytokinesis. Mouse embryonic fibroblasts deleted for ELMOD2 also displayed changes in cilia related processes including increased ciliation, multiciliation, ciliary morphology, ciliary signaling, centrin accumulation inside cilia, and loss of rootlets at centrosomes with loss of centrosome cohesion. Increasing ARL2 activity or overexpressing Rootletin reversed these defects, revealing close functional links between the three proteins. This was further supported by the fin…

GTPase-activating proteinBiologyMicrotubulesMitochondrial DynamicsCell Line03 medical and health sciencesMice0302 clinical medicineMicrotubuleGTP-Binding ProteinsCiliogenesisAnimalsHumansCiliaMolecular Biology030304 developmental biologyCytokinesisCentrosome0303 health sciencesADP-Ribosylation FactorsCiliumGTPase-Activating ProteinsCell BiologyArticlesFibroblastsCell biologyMitochondriaCytoskeletal Proteinsmitochondrial fusionCentrosomeCentrinRootletin030217 neurology & neurosurgeryCytokinesisSignal TransductionMolecular biology of the cell
researchProduct

RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy

2014

Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal an…

GTPase-activating proteinlipid dropletsrab3 GTP-Binding ProteinsATG16L1DMSO dimethyl sulfoxideFEZ20302 clinical medicineATG autophagy-relatedPhagosomesDAPI 4’ 6-diamidino-2-phenylindoleSQSTM1 sequestosome 1ATG16L1MAP1LC3 microtubule-associated protein 1 light chain 3GFP green fluorescent protein0303 health sciencesGABARAP GABA(A) receptor-associated proteinGTPase-Activating ProteinsCell biologyRAB3GAP1RAB3GAP2RABGAP RAB GTPase activating proteinATG3autophagyCALCOCO2 calcium binding and coiled-coil domain 2Basic Research PaperseV empty vectorATG8ATG5PBS phosphate-buffered salineBiologyPE phosphatidylethanolamineTBC domain TRE2-BUB2-CDC16 domainBAG3GEF guanine nucleotide exchange factor03 medical and health sciencesC. elegans Caenorhabditis elegansAnimalsHumansCaenorhabditis elegansMolecular Biology030304 developmental biologySirolimusDPH 1 6-diphenyl-1 3 5-hexatrieneproteostasisAutophagyBiological TransportCell BiologyFEZ1Bafi bafilomycin A1FEZ fasciculation and elongation protein zetaNBR1 neighbor of BRCA1 gene 1ProteostasissiRNA small interfering RNABSA bovine serum albuminRabLysosomes030217 neurology & neurosurgeryAutophagy
researchProduct

Molecular basis of filamin a-filGAP interaction and its impairment in congenital disorders associated with filamin a mutations

2008

Background Mutations in filamin A (FLNa), an essential cytoskeletal protein with multiple binding partners, cause developmental anomalies in humans. Methodology/Principal Findings We determined the structure of the 23rd Ig repeat of FLNa (IgFLNa23) that interacts with FilGAP, a Rac-specific GTPase-activating protein and regulator of cell polarity and movement, and the effect of the three disease-related mutations on this interaction. A combination of NMR structural analysis and in silico modeling revealed the structural interface details between the C and D β-strands of the IgFLNa23 and the C-terminal 32 residues of FilGAP. Mutagenesis of the predicted key interface residues confirmed the b…

ImmunoprecipitationFilaminsMolecular Sequence Dataeducationlcsh:MedicineComputational Biology/Protein Structure PredictionBiologyFilaminCell Biology/Cell SignalingCongenital AbnormalitiesBiochemistry/Protein Folding03 medical and health sciences0302 clinical medicineProtein structureContractile ProteinsCell Biology/CytoskeletonFLNAHumansFLNBFLNCAmino Acid Sequencelcsh:Science030304 developmental biologyGenetics0303 health sciencesMultidisciplinaryBinding SitesMolecular StructureSequence Homology Amino AcidPoint mutationlcsh:RGTPase-Activating ProteinsMicrofilament Proteins3. Good healthBiochemistry/BioinformaticsMutationProtein foldinglcsh:Q118 Biological sciences030217 neurology & neurosurgeryResearch Article
researchProduct

Cigarette smoke affects the onco-suppressor DAB2IP expression in bronchial epithelial cells of COPD patients

2019

AbstractCigarette smoke is a risk factor for COPD and lung cancer. In cancer, epigenetic modifications affect the expression of Enhancer of Zester Homolog 2 (EZH2), and silenced disabled homolog 2 interacting protein gene (DAB2IP) (onco-suppressor gene) by Histone H3 tri-methylation in lysine 27 (H3K27me3). In“ex vivo”studies, we assessed EZH2, H3K27me3 and DAB2IP immunoreactivity in bronchial epithelial cells from COPD patients (smokers, ex-smokers), Smoker and control subjects. In“in vitro” experiments we studied the effect of cigarette smoke extract (CSE) on EZH2/H3K27me3/DAB2IP expression, apoptosis, invasiveness, and vimentin expression in 16HBE, primary cells, and lung cancer cell lin…

Jumonji Domain-Containing Histone DemethylasesLung NeoplasmsCigar SmokingCelllcsh:MedicineApoptosismacromolecular substancesArticlePulmonary Disease Chronic ObstructiveRisk FactorsmedicineHumansEnhancer of Zeste Homolog 2 ProteinNeoplasm Invasivenesslcsh:ScienceLung cancerA549 CellOncogenesisInflammationA549 cellRegulation of gene expressionCOPDMultidisciplinarybusiness.industrylcsh:REZH2ApoptosiJumonji Domain-Containing Histone DemethylaseCancerras GTPase-Activating Proteinmedicine.diseaseAlveolar Epithelial Cellrespiratory tract diseasesLung NeoplasmGene Expression Regulation NeoplasticNeoplasm Invasiveness Pulmonary Disease Chronic Obstructivemedicine.anatomical_structureA549 Cellsras GTPase-Activating ProteinsApoptosisAlveolar Epithelial CellsCancer researchlcsh:QbusinessHumanairway disease
researchProduct

The landscape of epilepsy-related GATOR1 variants

2019

Purpose:\ud \ud To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway.\ud \ud Methods:\ud \ud We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.\ud \ud Results:\ud \ud The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia…

Male0301 basic medicineProbandDEPDC5SUDEP030105 genetics & heredityBioinformaticsLoss of Function Mutation/geneticsEpilepsyINDEL MutationLoss of Function MutationmTORC1 pathwayGenetics(clinical)ChildGenetics (clinical)Multiprotein Complexes/geneticsBrugada SyndromeDNA Copy Number VariationBrugada syndromeINDEL Mutation/geneticsGTPase-Activating ProteinsNPRL3SeizureDEPDC5PhenotypePedigree3. Good healthBrugada Syndrome/geneticsChild PreschoolFemaleHumanSignal TransductionDNA Copy Number VariationsAdolescentSeizures/complicationsMechanistic Target of Rapamycin Complex 1/geneticsDNA Copy Number Variations/geneticsMechanistic Target of Rapamycin Complex 1Tumor Suppressor Proteins/geneticsArticleFocal cortical dysplasia03 medical and health sciencesSeizuresGTPase-Activating Proteins/geneticsmedicineHumansGenetic Predisposition to DiseaseDEPDC5; Focal cortical dysplasia; Genetic focal epilepsy; mTORC1 pathway; SUDEPGenetic focal epilepsyEpilepsy/complicationsRepressor Proteins/geneticsEpilepsybusiness.industryGTPase-Activating ProteinTumor Suppressor ProteinsInfant NewbornCorrectionInfantRepressor ProteinCortical dysplasiamedicine.diseaseddc:616.8Repressor Proteins030104 developmental biologyFrontal lobe seizures[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMultiprotein ComplexesMultiprotein ComplexeSignal Transduction/geneticsHuman medicinebusiness
researchProduct